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Abstract—A new Bayesian model is proposed for image seg-
mentation based upon Gaussian mixture models (GMM) with
spatial smoothness constraints. This model exploits the Dirichlet
compound multinomial (DCM) probability density to model the
mixing proportions (i.e., the probabilities of class labels) and a
Gauss–Markov random field (MRF) on the Dirichlet parameters
to impose smoothness. The main advantages of this model are two.
First, it explicitly models the mixing proportions as probability
vectors and simultaneously imposes spatial smoothness. Second,
it results in closed form parameter updates using a maximum a
posteriori (MAP) expectation-maximization (EM) algorithm. Pre-
vious efforts on this problem used models that did not model the
mixing proportions explicitly as probability vectors or could not
be solved exactly requiring either time consuming Markov Chain
Monte Carlo (MCMC) or inexact variational approximation
methods. Numerical experiments are presented that demonstrate
the superiority of the proposed model for image segmentation
compared to other GMM-based approaches. The model is also
successfully compared to state of the art image segmentation
methods in clustering both natural images and images degraded
by noise.

Index Terms—Bayesian model, Dirichlet compound multinomial
distribution, Gauss–Markov random field prior, Gaussian mixture,
image segmentation, spatially varying finite mixture model.

I. INTRODUCTION

M ANY approaches have been proposed to solve the
image segmentation problem [1], [2]. Among them,

clustering based methods rely on arranging data into groups
having common characteristics [3], [4]. During the last decade,
the main research directions in the relevant literature are fo-
cused on graph theoretic approaches [5]–[8], methods based
upon the mean shift algorithm [9], [10] and rate distortion
theory techniques [11], [12].

Modeling the probability density function (pdf) of pixel
attributes (e.g., intensity, texture) with finite mixture models
(FMM) [13]–[15] is a natural way to cluster data because it
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automatically provides a grouping based upon the components
of the mixture that generated them. Furthermore, the likelihood
of a FMM is a rigorous metric for clustering performance
[14]. FMM based pdf modeling has been used successfully in
a number of applications ranging from bioinformatics [16] to
image retrieval [17]. The parameters of the FMM model with
Gaussian components can be estimated through maximum like-
lihood (ML) estimation using the Expectation-Maximization
(EM) algorithm [13], [14], [18]. However, it is well-known
that the EM algorithm finds, in general, a local maximum of
the likelihood. Furthermore, it can be shown that Gaussian
components allow efficient representation of a large variety of
pdf. Thus, Gaussian mixture models (GMM), are commonly
employed in image segmentation tasks [14].

A drawback of the standard ML approach for image segmen-
tation is that commonality of location is not taken into account
when grouping the data. In other words, the prior knowledge
that adjacent pixels most likely belong to the same cluster is not
used. To overcome this shortcoming, spatial smoothness con-
straints have been imposed.

Imposing spatial smoothness is key to certain image pro-
cessing applications since it is an important a priori known
property of images [19]. Examples of such applications include
denoising, restoration, inpainting and segmentation problems.
In a probabilistic framework, smoothness is expressed through
a prior imposed on image features. A common approach is the
use of an MRF. Many MRF variants have been proposed, see
for example [20]. However, determination of the amount of the
imposed smoothness automatically requires knowledge of the
normalization constant of the MRF. Since this is not known
analytically, learning strategies were proposed [21]–[23].

Research efforts in imposing spatial smoothness for image
segmentation can be grouped into two categories. In the
methods of the first category, spatial smoothness is imposed on
the discrete hidden variables of the FMM that represent class
labels, see for example [7], [24]–[26]. These approaches may
be categorized in a more general area involving simultaneous
image recovery and segmentation which is better known as
image modeling [27]–[30]. More specifically, spatial regular-
ization is achieved by imposing a discrete Markov random field
(DMRF) on the classification labels of neighboring pixels that
penalizes solutions where neighboring pixels belong to dif-
ferent classes. Another method in this category is proposed in
[7] which is based upon the optimization of an energy function
having a term for the quality of the clustering and a term for
the spatial tightness. Minimization of the energy function is
accomplished using graph cuts [31].
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The Gaussian scale mixtures (GSM) and their extension of
mixtures of projected GSM (MPGSM) and the fields of GSM
(FoGSM) were also used in image denoising in the wavelet do-
main in [32]–[34]. In GSM denoising [32], clusters of wavelet
coefficients are modeled as the product of a Gaussian random
vector and a positive scaling variable. In MPGS denoising [34],
the model is extended to handle different local image character-
istics and incorporates dimensionality reduction through linear
projections. By these means, the number of model parameters
is reduced and fast model training is obtained. In the case of
FoGSM [33], multiscale subbands are modeled by a product
of an exponentiated homogeneous Gaussian Markov random
field (hGMRF) and a second independent hGMRF. In [33], it
is demonstrated that samples drawn from a FoGSM model have
marginal and joint statistics similar to subband coefficients of
photographic images.

To estimate the smoothness parameters, Woolrich et al. pro-
posed in [35] and [36] a model based upon a logistic transform
that approximates the previously mentioned DMRF with a con-
tinuous Gaussian Markov random field. However, for this model
inference of the contextual mixing proportions (posterior class
label probabilities) of each pixel cannot be obtained in closed
form. Thus, in [35], inference based upon Markov Chain Monte
Carlo (MCMC) is proposed, while in [36] inference based upon
Variational Bayes (VB) is employed. Although MCMC methods
have been studied in statistics for a long time and several gen-
eral criteria have been proposed to determine their convergence
[37], [38], inference based upon them may be notoriously time
consuming. On the other hand, VB-based inference is approxi-
mate and there is no easy way to assert the tightness of the vari-
ational bound. Moreover, similar in spirit approaches to avoid
local maxima of the likelihood, which is a drawback of the ML
solution, rely on the stochastic EM and its variants [39], [40].

In the second category of methods, the MRF-based smooth-
ness constraint is not imposed on the labels but on the contextual
mixing proportions. This model is called spatially variant finite
mixture model (SVFMM) [41] and avoids the inference prob-
lems of DMRFs. In this model maximum a posteriori (MAP) es-
timation of the contextual mixing proportions via the MAP-EM
algorithm is possible. However, the main disadvantage of this
model is that the M-step of the proposed algorithm cannot be
obtained in closed form and is formulated as a constrained opti-
mization problem that requires a projection of the solution onto
the unit simplex (positive and summing up to one components)
[41], [42]. Consequently, the parameters that control the spatial
smoothness cannot be estimated automatically from the data.

In [43], a new family of smoothness priors was pro-
posed for the contextual mixing proportions based upon the
Gauss–Markov random fields that takes into account cluster
statistics, thus, enforcing different smoothness strength for
each cluster. The model was also refined to capture information
in different spatial directions. Moreover, all the parameters
controlling the degree of smoothness for each cluster, as well
as the label probabilities for the pixels, are estimated in closed
form via the maximum a posteriori (MAP) methodology. The
advantage of this family of models is that inference is obtained
using an EM algorithm with closed form update equations.
However, the implied model still does not take into account

explicitly that the mixing proportions are probabilities, thus,
the constraint that they are positive and must sum to one is not
guaranteed by the update equations. As a result, the M-step
of this EM algorithm also requires a reparatory projection
step which is ad-hoc and not an implicit part of the assumed
Bayesian model. A synergy between this category of priors and
line processes, to account for edge preservation, was presented
in [44].

In this paper, we present a new hierarchical Bayesian model
for mixture model-based image segmentation with spatial con-
straints. This model assumes the contextual mixing proportions
to follow a Dirichlet compound multinomial (DCM) distribu-
tion. More precisely, the class to which a pixel belongs is mod-
eled by a discrete multinomial distribution whose parameters
follow a Dirichlet law [45]. Furthermore, spatial smoothness is
imposed by assuming a Gauss–Markov random field (GMRF)
prior for the parameters of the Dirichlet. The parameters of the
multinomial distribution are integrated out in a fully Bayesian
framework and the updates of the parameters of the Dirichlet
are computed in closed form through the EM algorithm.

The Dirichlet distribution has been previously proposed as
a prior for text categorization [46], [47], object recognition
and detection [48] and scene classification [49]. The differ-
ence of the proposed model with respect to existing methods
is twofold. At first, text, scene or object categorization are
supervised learning problems while the proposed segmentation
method is unsupervised. Also, in the existing studies, estima-
tion of the parameters of the Dirichlet distribution is generally
accomplished by variational inference or by simplified logistic
models. The advantage of the herein proposed model is that,
not only the E-step can be expressed in closed form, but also
our model explicitly assumes that the contextual mixing pro-
portions are probability vectors. Inference through the EM
algorithm leads to a third degree polynomial equation for the
parameters of the Dirichlet distribution. Therefore, the closed
form M-step yields parameter values automatically satisfying
the necessary probability constraints.

Another approach to handle non stationary images and re-
lying on MRF is the triplet Markov field (TMF) model [50]
which was also applied to image segmentation [51], [52]. The
main difference of TMF with respect to our model is that, in
TMF, the random field is imposed jointly on the hidden vari-
ables, the observation and a set of auxiliary variables which de-
termine the type of the stationarity. In contrast, in our model, the
random field is imposed on the contextual mixing proportions.

Numerical experiments are presented to assess the perfor-
mance of the proposed model both with simulated data where
the ground truth is known and real natural images where the
performance is assessed both visually and quantitatively.

The remainder of the manuscript is organized as follows:
background for the spatially variant finite mixture model is
given in Section II. The proposed modeling of probabilities
of the pixel labels with a DCM distribution is presented in
Section III. In Section IV, the MAP-EM algorithm for the
estimation of the proposed model parameters is developed.
Experimental results of the application of our model to natural
and artificial images are presented in Section V and conclusions
and directions for future research are given in Section VI.
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II. BACKGROUND ON SPATIALLY VARIANT

FINITE MIXTURE MODELING

Let denote the vector of features
(e.g., intensity, textural features) representing the th spatial
location, , of a -dimensional vector valued image
modeled as independently distributed random variables. The
SVFMM [41]–[43] provides a modification of the classical
FMM approach [13], [14] for pixel labeling. It assumes a
mixture model with components each one having a vector of
parameters defining the density function.

Pixel is characterized by its probability vector
where is the number of components. We

define as the set of probability
vectors and the set of component pa-
rameters. The parameters , are the contextual
mixing proportions for each pixel and represent the probabili-
ties of the th pixel to belong to the th class
and must satisfy the constraints

(1)

The standard finite mixture model [41] assumes that the proba-
bility density function of an observation is expressed by

(2)

with being a Gaussian distribution with parameters
, where is the mean

vector and is the covariance matrix of the -dimensional
Gaussian distribution. This notation implies that are consid-
ered as random variables and as parameters.

The spatially varying finite mixture models use a prior den-
sity distribution for the random variables . Therefore,
denoting the set of pixels feature vectors , with

, which we assume to be statistically independent and
following Bayes rules, we obtain the posterior probability den-
sity function given by

(3)

with the log-density

(4)

A typical example of is the Gauss–Markov random field
prior [43], expressed by

(5)

where the parameter captures the spatial smoothness of
cluster and enforces different degree of smoothness in each
cluster in order to better adapt the model to the data.

The graphical model for the spatially variant version of the fi-
nite mixture model (SVFMM) is presented in Fig. 1. In the stan-
dard FMM, the feature vector for a given pixel depends upon
the state of the discrete hidden variable denoting the mixture
component responsible for generating the observation . That
is, if pixel belongs to class . In that case, the mixing
proportion for a given class is simply the percentage of pixels
belonging to that class. In the case of the SVFMM, each pixel
has its own set of mixing proportions , generally called con-
textual mixing proportions or probabilities of the pixel labels.
These contextual mixing proportions are spatially constrained
by a smoothness prior. The strength of this prior could either be
unique for the whole set of pixels [42] or could vary based upon
the local statistics of each image class, thus, making the model
less stationary (5).

The EM algorithm [18] for MAP estimation of the model pa-
rameters requires the computation of the conditional expecta-
tion values of the hidden variables at the E-step of iteration step

(6)

In the M-step, considering that the complete data log-likelihood
is linear in the “hidden” variables [18], the maximization of the
complete data log-likelihood

(7)

yields the model parameters. The function in (7) can be
maximized independently for each parameter providing the fol-
lowing update equations of the mixture model parameters at step

(8)

The probabilities are computed by setting
which yields a second degree equation with respect to

(9)

where is the number of pixels in the neighborhood of the
th pixel.
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Fig. 1. Graphical model for the spatially variant finite mixture model
(SVFMM).

It is easily verified that (9) has always a real nonnegative
solution for . However, the main drawback of the SVFMM
is that it imposes spatial smoothness on without explicitly
taking into account that it is a probability vector ( ,

, ). For this purpose, reparatory
computations were introduced in the M-step to enforce the vari-
ables to satisfy these constraints. A gradient projection al-
gorithm was used in [41] and quadratic programming was pro-
posed in [42]. This approach was shown to improve both the
criterion function (7) and the performance of the model. How-
ever, reparatory projections compromise the assumed Bayesian
model.

III. DIRICHLET COMPOUND MULTINOMIAL MODELING OF

CONTEXTUAL MIXING PROPORTIONS

To overcome the limitations of SVFMM, we propose in this
section, a new Bayesian model for mixture-based the image seg-
mentation problem based upon a hierarchical prior for the the
contextual mixing proportions , which are assumed to follow
a DCM distribution. The DCM distribution is a multinomial
whose parameters are generated by a Dirichlet distribution [45],
thus are probability vectors. Similar in spirit priors have been
proposed, in the totally different context of text modeling [47]
where the DCM parameters are estimated through an iterative
gradient descent optimization method. Also in a recent work
[53], a new family of exponential distributions is proposed ca-
pable of approximating the DCM probability law in order to
make its parameter estimation faster than [47]. In what follows,
we describe how to compute them in closed form. Furthermore,
spatial smoothness is imposed on the parameters of the Dirichlet
distributions which are computed in closed form through a cubic
equation having always one real non negative solution that sat-
isfies the constraints of the Dirichlet parameters.

A. Dirichlet Compound Multinomial Distribution

More precisely, for the th pixel, , the
class label is considered to be a random variable fol-
lowing a multinomial distribution with probability vector

with being the number of classes.

Let also to be the set of pa-
rameters for the whole image. By the multinomial definition it
holds that

(10)

with

(11)

The model described by (10) represents the probability
that pixel belongs to class , as one of the possible out-
comes of a multinomial process with realizations. Each of
the outcomes of the process appears with probability ,

. Generally speaking, this is a generative model
for the image. When the multinomial distribution is used to
generate a clustered image, the distribution of the number of
emissions (i.e., counts) of an individual class follows a binomial
law.

The DCM distribution assumes that parameters of
the multinomial follow a Dirichlet distribution param-
eterized by where

, , is the vector of
Dirichlet parameters for

(12)

where , , and is the
Gamma function.

Under the Bayesian framework, the probability label for the
th image pixel is obtained by marginalizing the parameters

(13)

Substituting (10) and (12) into (13) we obtain , with some easy
manipulation, the following expression for the label probabili-
ties:

(14)

with .

B. Hierarchical Image Model

We now assume a generative model for the image where the
determination of component generating the th pixel is an
outcome of a DCM process with only one realization. Conse-
quently, the vector of the hidden variables (6) has the th
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component equal to one and all the others set to zero. This is
also illustrated in the contextual mixing proportions which in
that case are the posterior probabilities

(15)

Thus, taking into account that we have one realization of the
DCM process and that , the label
probabilities for the th pixel in (14) become

(16)

The new model may become spatially variant by introducing
a spatial prior on the parameters of the Dirichlet distribution.
More specifically, we assume a Gauss–Markov type random
field prior for our model since its parameters may be estimated
in closed form [43]

(17)

The main characteristic of this prior is that it enforces smooth-
ness of different degree in each cluster, thus providing better
adaptation to the data [43].

The graphical model for this hierarchical approach is pre-
sented in Fig. 2. We will refer to this new model as the Dirichlet
Compound Multinomial-based Spatially Variant Finite Mixture
Model (DCM-SVFMM). The generative image model works as
follows: a sample (probability vector) is first drawn from a
Dirichlet distribution with parameter , thus obtaining a multi-
nomial distribution with parameter . The “hidden” variable ,
denoting the class of observation , is the outcome of a multino-
mial process parameterized by . Moreover, the parameters of
the Dirichlet distribution are spatially constrained by a smooth-
ness prior as it is also the case for the standard SVFMM.

IV. MAP-EM ESTIMATION

Employing the proposed model one can derive the corre-
sponding MAP algorithm using the EM methodology. Applying
the Gauss–Markov prior in (17) to parameters yields the
following MAP function to be maximized in the M-step of the

Fig. 2. Graphical model for feature vector � following a spatially variant finite
mixture model (SVFMM) with a Dirichlet compound multinomial (DCM) prior.

EM algorithm, see (18) at the bottom of the page, where we
define

To compute the model parameters at the M-step we
have to maximize (18) with respect to , that is, to compute
its partial derivative and set the result to zero. Considering a
neighborhood with and setting

gives a third degree polynomial equation with respect to ,
for and

(19)

where

Based upon polynomial theory, it can be proved that (19) has
only one real nonnegative solution satisfying the constraint in
(12), that is . Specifically, the constant term of the third
degree (19) is negative, thus the product of the roots should be
positive. This implies that, for three real roots, either three roots
should be positive or two roots should be negative and one pos-
itive. The coefficient of the quadratic term is positive which im-
plies that the sum of the roots should be negative. Therefore, two
roots should be negative and one positive. For a pair of complex
conjugate roots and a real root, the real root is always positive

(18)
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since the product of the three roots should be positive. More-
over, the root can be obtained in closed form, see [54], [55].

Finally, the solution for the class variances are obtained by
setting and solving for at time step

(20)

The overall MAP-EM algorithm is summarized as follows:
• Initialize the mixture model component parameters

, and the vectors of parameters
of the Dirichlet distribution for each pixel .

• Do until the MAP functional (18) does not change signif-
icantly.
— E-step

• Calculate the posterior probabilities that the th
pixel belongs to the th class (6).

— M-step
• Calculate the new mixture model parameters (8).
• Update the parameters of the Dirichlet distribution by

keeping only the real nonnegative solution of (19).
• Update the probabilities for the pixel labels (16).
• Update the class variances (20).

• End
The principal advantage of the DCM approach is that the ob-

tained solution satisfies the constraints in (1) for the contextual
mixing proportions as shown in (16) which is a natural con-
sequence of the DCM prior. Therefore, no reparatory projec-
tion step is needed in the EM algorithm in contrast to previous
methods [41], [42].

V. EXPERIMENTAL RESULTS

Since the EM algorithm is sensitive to initialization, in our ex-
periments, we have executed a number of iterations of the EM
algorithm with a set of randomly generated initial conditions
and kept the one giving the maximum value for the log-likeli-
hood. In the termination criterion of the EM algorithm, consid-
ered here, convergence was defined as the percentage of change
in the log-likelihood (4) between two consecutive iterations to
be less than 0.001%, or .

At first, to justify the necessity for the proposed DCM prior
with respect to the previously proposed SVFMM [43], we
present examples of segmentation of piecewise constant images
of varying complexity. Moreover, evaluation of our method
to the segmentation of natural images and comparison to the
state of the art methods was also performed. We applied the
DCM-SVFMM algorithm to the 300 images of the Berkeley
image data base [56]. In that context, we compared our method
with two unsupervised segmentation algorithms: the Gaussian
blurring mean-shift (GBMS) [10] and the normalized cut (Ncut)
[5]. In both cases (artificial and natural images), the robustness
of our method to Gaussian noise was also investigated.

A. Piecewise Constant Image Segmentation

We begin with a simple example of two-class image segmen-
tation in order to clarify why a DCM-SVFMM model naturally

Fig. 3. Two-class image segmentation and the contextual mixing proportions
�� � � �, for each pixel � � �� � � � � � for the first iteration of the EM algo-
rithm of the SVFMM. Top row: a piecewise constant image of two distinct re-
gions of intensities 50 and 150 with equal mixing proportions. Notice that all
of the values of the mixing proportions coincide at a single point. Bottom row:
The image is degraded by zero mean white Gaussian noise in order to achieve
��� � 	 dB. A representative percentage of the points are plotted for visu-
alization purposes. In both cases, the contextual mixing proportions need to be
projected onto the line � 
 � � �.

completes the Bayesian framework of the standard SVFMM.
The piecewise constant image at the top left of Fig. 3 has two
distinct regions of intensities 50 and 150. Segmenting the image
into two classes by the SVFMM [43] leads to the estimation
of the posterior probabilities , for each pixel

. As the classes are clearly distinct, the values of the
probabilities of the pixel labels coincide with the two crosses at
the bottom left corner of the figure (each cross represents half of
the image pixels). The values of the contextual mixing propor-
tions must satisfy (1), that is, they must lie on the straight line

. However, as the clustering of the image is easy to
obtain the projection step does not alter the segmentation.

When the image is degraded by white Gaussian noise at 7 dB
the values of have wider diversity. Projecting these values
onto the line through a reparatory step leads to
a percentage of correctly classified pixels which is consistently
0.4–0.8% inferior to the result obtained by the DCM-SVFMM
where no projection needs to be performed as the contextual
mixing proportions lie on the line . This difference
may not be visible by the human eye but it is more pronounced
when the number of segments increases.

For the 3-class segmentation of the piecewise constant image
in Fig. 4 with the SVFMM, the contextual mixing proportions
are projected onto the surface which leads
to a more intricate configuration. This is not the case for the
DCM-SVFMM where the contextual mixing proportions are
naturally computed as probability vectors. In that case, the dif-
ference between the segmentations provided by the two models
favors the DCM-SVFMM at about 1.5–2.5%. Notice that the
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Fig. 4. (a) Three-class piecewise constant image. Intensity means are 30,
125, and 220. The contextual mixing proportions are 0.37, 0.30, and 0.33
respectively. (b) Image degraded by zero mean white Gaussian noise in order to
achieve ��� � � dB. Segmentation into three classes using the (c) SVFMM
(95.1% correct classification) and the (d) DCM-SVFMM (97.3% correct
classification).

Fig. 5. (a) 8-class piecewise constant image. Intensity means are 32, 64, 96,
128, 160, 192, 224 and 255. The mixing proportions are respectively 0.12, 0.16,
0.15, 0.13, 0.11, 0.10, 0.12 and 0.11. (b) Image is degraded by zero mean white
Gaussian noise in order to achieve ��� � �� dB. Segmentation into 8 classes
using the (c) SVFMM (88.2% correct classification) and the (d) DCM-SVFMM
(93.4% correct classification).

SVFMM classifies erroneously the pixels at the region bound-
aries, while the DCM-SVFMM is able to preserve the edges
[Fig. 4(c) and (d)]. The SVFMM completely misses the little
region at the middle right part of the image and creates two new
small regions at the top left part of the image (outside the white
region).

As the number of clusters increases, the performance deteri-
oration due to the reparatory projection step is more apparent.
In the 8-class segmentation example in Fig. 5, the segmenta-
tion provided by the SVFMM, at 16 dB signal to noise ratio, is

Fig. 6. Variation of the percentage of correctly classified pixels when the
8-class image in Fig. 5(a) is degraded by noise. Top: correct classification
versus signal to noise ratio when the image is degraded by white Gaussian
noise. Bottom: correct classification versus percentage of total counts when the
image is degraded by Poisson noise.

erroneous not only at the region boundaries but also the piece-
wise constant image areas. At the same noise level, the DCM-
SVFMM only slightly deforms the region boundaries (notice the
triangular regions at the top right part of the segmented images).

The variation of the percentage of correctly classified pixels
in Fig. 5(a) to different levels of Gaussian and Poisson noise is
presented in Fig. 6. In the case of Gaussian noise, its variance
was adjusted in order to obtain different SNR between 13 and
43 dB. In the case of photon limited images, every pixel inten-
sity was replaced by a random number generated by a Poisson
process having as mean value a fraction of the pixel intensity.
Thus, the total photon counts of the image were reduced by
different fractions. Poisson noise is signal dependent and diffi-
cult to handle. However, the DCM-SVFMM segments the image
with high accuracy and in all cases provides better results than
the SVFMM.

B. Natural Image Segmentation

We have also evaluated the DCM-SVFMM on the segmenta-
tion of the 300 images of the Berkeley image data base [56]. To
this end, we have compared our method with the Ncut [5] and
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Fig. 7. Natural image segmentation examples using the DCM-SVFMM with
the the MRF texture features described in [58]. The features were computed on
7� 7 pixel neighborhoods and underwent dimensionality reduction by projec-
tion on a 8-dimensional space using PCA.

the GBMS algorithm [10]. We have applied the DCM-SVFMM
and the Ncut with number of segments
and the GBMS with the entropy based termination criterion
[10].

An important issue in natural image segmentation is what
features to use as input to a segmentation algorithm, especially
when texture segmentation is considered. Apart from standard
filter banks, in the recent literature, the two major approaches
to texture description are the Blobworld features [57] and the
MRF features [58]. Blobworld features generate 6-D vectors
containing color (in Lab space) and texture (polarity, anisotropy,
contrast) information and one of the key points of the process is
the correct estimation of the scale of the texture. On the other
hand, an MRF feature is simply a vectorized version of a cutoff
window around a pixel followed by dimensionality reduction
using PCA.

We have experimented with both approaches for texture de-
scription. Representative results are presented in Fig. 7 for the
MRF texture model and in Fig. 8 for the Blobworld representa-
tion. As it can be observed, the description based upon the Blob-
world features preserves better the boundaries between textured
regions. MRF texture features provide a distinct response at tex-
tured boundaries as it is also noticed in [12]. However, the PCA
smoothing step makes MRF texture features more insensitive
to noise than Blobworld features. Further investigation revealed
that Blobworld features from degraded natural images provided
very favorable results for our DCM-SVFMM method with re-
spect to ncut and GBMS. As one of our purposes is to investigate

Fig. 8. Natural image segmentation examples using the DCM-SVFMM with
the the Blobworld texture features described in [57].

TABLE I
STATISTICS ON THE PROBABILISTIC RAND (PR) INDEX FOR THE COMPARED

SEGMENTATION METHODS OVER THE 300 IMAGES OF THE BERKELEY IMAGE

DATA BASE. ALL OF THE COMPARED METHODS EMPLOYED THE MRF TEXTURE

FEATURES DESCRIBED IN [58]. THE FEATURES WERE COMPUTED ON 7� 7
PIXEL NEIGHBORHOODS AND UNDERWENT DIMENSIONALITY REDUCTION BY

PROJECTION ON A 8-D SPACE USING PCA

the behavior of the compared methods to noise without any bias,
we have decided to perform the comparative experiments using
the MRF texture features for all the methods.

Following the comparative road map in [12], we have quan-
titatively compared the segmentation methods using four per-
formance measures: the probabilistic Rand index (PR) [59], the
variation of information (VI) [60], the global consistency error
(GCE) [56] and the Boundary displacement error (BDE) [61].
The PR index measures the consistency between human seg-
mentations and the computed segmentation map. VI measures
the amount of information one segmentation conveys about the
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TABLE II
STATISTICS ON THE VARIATION OF INFORMATION (VI) FOR THE COMPARED

SEGMENTATION METHODS OVER THE 300 IMAGES OF THE BERKELEY IMAGE

DATA BASE. ALL OF THE COMPARED METHODS EMPLOYED THE MRF TEXTURE

FEATURES DESCRIBED IN [58]. THE FEATURES WERE COMPUTED ON 7� 7
PIXEL NEIGHBORHOODS AND UNDERWENT DIMENSIONALITY REDUCTION BY

PROJECTION ON A 8-D SPACE USING PCA

other (mutual information). GCE measures the degree of refine-
ment between two segmentations. Finally, BDE measures the
average chamfer distance between the boundaries of two seg-
mentation maps. For each measure the mean and the median
were computed. As a supplemental robustness indicator, we also
present the 10% trimmed mean values where the 5% best and
the 5% worst results were excluded.

The algorithms were provided with the MRF features without
any preprocessing step or an initialization that could signifi-
cantly give important advantage to any method. However, better
numerical results could be obtained by an initialization based
upon superpixels [62], [63] as it is the case in the extensive com-
parative study presented in [12].

The results for the PR index are summarized in Table I where
it is clear that the GBMS provides the better performance in
terms of the mean and the 10%-trimmed mean values and the
Ncut with clusters reveals more robust (see its median
value). In Table II, where the statistics for the VI are shown,
the DCM-SVFMM with performs better in all cases.
As we have observed, the relatively small number of segmnets

maximizes the mutual information with respect to the
cases where the value of is larger. This occurs because, gener-
ally, the joint histograms present less disorder due to the smaller
number of bins. In any case, the Ncut algorithm has inferior re-
sults with regard to DCM-SVFMM while the GBMS asymptot-
ically approaches, but never reaches, the values of our method
for . Similar remarks could be made for Table III, pre-
senting the GCE, where our method clearly outperforms the
Ncut and GBMS segmentation algorithms. Finally, the BDE sta-
tistics (Table IV) are also favorable to the DCM-SVFMM seg-
mentation algorithm.

It must also be noted that the DCM-SVFMM method is pa-
rameter-free while both the Ncut and the GBMS methods are
parameter dependent. This means that in order to apply these
methods one must take into account that they should undergo
a trial-and-error procedure in order to determine these parame-
ters. Also, the involved parameters depend both upon the image

TABLE III
STATISTICS ON THE GLOBAL CONSISTENCY ERROR (GCE) FOR THE COMPARED

SEGMENTATION METHODS OVER THE 300 IMAGES OF THE BERKELEY IMAGE

DATA BASE. ALL OF THE COMPARED METHODS EMPLOYED THE MRF TEXTURE

FEATURES DESCRIBED IN [58]. THE FEATURES WERE COMPUTED ON 7� 7
PIXEL NEIGHBORHOODS AND UNDERWENT DIMENSIONALITY REDUCTION BY

PROJECTION ON A 8-D SPACE USING PCA

TABLE IV
STATISTICS ON THE BOUNDARY DETECTION ERROR (BDE) FOR THE COMPARED

SEGMENTATION METHODS OVER THE 300 IMAGES OF THE BERKELEY IMAGE

DATA BASE. ALL OF THE COMPARED METHODS EMPLOYED THE MRF TEXTURE

FEATURES DESCRIBED IN [58]. THE FEATURES WERE COMPUTED ON 7� 7
PIXEL NEIGHBORHOODS AND UNDERWENT DIMENSIONALITY REDUCTION BY

PROJECTION ON A 8-D SPACE USING PCA

size and the expected spatial coherence. From this point of view,
our method is more flexible.

Furthermore, we have examined the performance of the com-
pared methods to the segmentation of noisy images. To this end,
20 images of the Berkeley image data base [56] were selected.
These images contain both color and texture and represent a va-
riety of natural scenes. The images were then degraded by white
Gaussian noise of varying strength with the resulting SNR being
between 12 dB and dB. A SNR below 0 dB results in a se-
vere degradation of the image. However, in MRF feature space,
the corruption is less intense as PCA smoothing eliminates part
of the noise. This is why we have preferred to use the MRF tex-
ture features instead of the Blobworld description which would
be more favorable to the DCM-SVFMM algorithm.

The results for the mean value of the PR index as a function
of the SNR are presented in Fig. 9. The curves for the Ncut and
DCM-SVFMM for different values of the number of segments
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Fig. 9. Evaluation of the segmentation of 20 images of the Berkeley image data base degraded by white Gaussian noise of varying strength. The mean value of
the PR index as a function of the SNR is presented for the compared methods. All of the compared methods employed the MRF texture features described in [58].
The features were computed on 7� 7 pixel neighborhoods and underwent dimensionality reduction by projection on a 8-D space using PCA.

are shown. The curve for the GBMS is the same in all of the
plots. As it can be observed, for higher SNR the GBMS and the
DCM-SVFMM perform in a similar way. When the SNR values
decrease, the DCM-SVFMM has better PR indices. The Ncut
is clearly more influenced by the noise. Let us notice that the
results presented in Fig. 9 are the more favorable to Ncut and
especially to GBMS with respect to the qualitative evaluation
measures examined in this study. The statistics for the other
measures (VI, GCE, BDE) are widely in favor of the DCM-
SVFMM even for higher SNR.

Finally, an important remark of our experimental investiga-
tion is that when only (Lab) color features are used, the compar-
ison revealed a very high performance for the DCM-SVFMM
with respect to the other segmentation methods. The explana-
tion is that when the added noise is not smoothed out by PCA
as it is the case in MRF texture features, the Ncut and GBMS
methods are not robust and provide erroneous segmentations.
This may be significant for applications involving nontextured
images.

The execution time of the algorithm depends upon many pa-
rameters such as the dimensions of the image, the number of
segments and most importantly the dimension of the feature
vectors. The experiments presented here were performed using
MATLAB on a standard PC having a 2 GHz dual core processor
with 2 GB RAM. For the 3-class image of 256 256 pixels,

using as feature only the intensity, the algorithm performs one
EM iteration per second and convergence may be achieved in
10–50 iterations, depending upon the amount of noise. On the
other hand, the Berkeley images are much larger
and using the 8-D MRF features yields an execution time of 30
s per iteration in average.

VI. CONCLUSION AND FUTURE WORK

We have presented a fully Bayesian methodology for image
segmentation and modeling using a hierarchical spatially con-
strained mixture model. The model takes into account spatial
information by imposing distinct smoothness priors on the prob-
abilities of each cluster. The contextual mixing proportions for
each pixel are constrained to follow a Dirichlet compound multi-
nomial distribution, thus, avoiding the projection step in the
standard EM algorithm [42]. A closed form solution for updates
of the coefficients of the Dirichlet distributions was derived in
a MAP framework and the contextual mixing proportions are
explicitly estimated. The experimental results confirm the the-
oretical significance of the proposed method by showing im-
provements with respect to the performance of spatially varying
mixture models, employing a projection step to constrain the
values of the mixing proportions. Comparison with state of the
art techniques for image segmentation reveals that the proposed
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method performs at the same level in natural image segmenta-
tion. Moreover, in presence of Gaussian noise, the herein pre-
sented algorithm provides more coherent segmentations in all
cases where the state-of-the-art methods fail. A notable advan-
tage of the DCM-SVFMM method is that it does not need any
parameter to be fixed before training which is not the case nei-
ther in graph based methods nor in the mean-shift algorithm
where the result strongly depends upon the selected parameters.

Important open questions in a segmentation algorithm con-
cern the estimation of the number of image segments as well
as the automatic determination of salient features in the case
of multidimensional feature vectors [64], [65]. Recently pro-
posed image models have shown to be very efficient for image
denoising [33]. A comparison of the method proposed here to
such models for image segmentation is also envisaged.

Additional shortcomings may be related to a specific segmen-
tation algorithm. In our case, a first issue is the initialization of
the mixtures which is a well known problem. Another limita-
tion is the lack of an implicit or explicit boundary that could be
obtained by a presegmentation of the image using for instance
a superpixel representation. These issues constitute the subject
of on going research.
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